
NASA-CR-193779

0

..:_ ,,,.,,a _ t

/,c!.;'7-_

(NASA-CR-193779) AUTOMATED

KNOWLEDGE GENERATION Final Report

(University of Centra] Florida)
26 D

N94-704_3

Uncl as

Z9/82 0181278

FINAL REPORT

University of Central Florida
Grant: NAG10-0042

AUTOMATED KNOWLEDGE GENERATION

FINAL REPORT

Submitted to:

National Aeronautics and Space Administration

John F. Kennedy Space Flight Center

Grant Number NAG10-0042

CE

August 1990

Harley R. Myler Avelino J. Gonzalez

Department of Computer Engineering

University of Central Florida

College of Engineering Technical Report 90-1623202/3

Table of Contents

1.0 Introduction ... 1

3.0 Accomplishments .. 6

4.0 Pseudo-Objects Analysis .. 7

5.0 Conclusion and Areas for Future Research 1 4

5.1 Operational Improvements to the AKG System 1 4

5.2 Automated Design Data Capture ... 1 5

5.3 Automated System Identification .. 15

Bibliography ... 1 6

1.0 Introduction

The Automated Knowledge Generation system was proposed to the NASA

Kennedy Space Center's Advanced Projects Office in August of 1987 as a possible

means of solving the knowledge engineering problem associated with the

creation of data bases for model-based reasoning systems. Computer Aided

Design (CAD) databases were identified by NASA as a potential source of

information for an automated knowledge generator (AKG) program that would

convert CAD representations to model-base representations for use by

automated reasoning programs. NASA funded an earlier study to convert CAD

representations using a simple symbolic translation scheme; however, it was

determined that the requisite functional knowledge required by the automated

reasoning system targets could not be elucidated by a translator. The proposal

offered by the University of Central Florida (UCF) was to construct a system that

would use techniques of relaxation labelling borrowed from machine vision

research to solve the problems of CAD database conversion to knowledge bases.

In September of 1987, NASA awarded Drs. Avelino Gonzalez and Harley Myler of

the UCF Computer Engineering Department a three-year grant to study and

construct an Automated Knowledge Generation system.

This document gives a brief description of the AKG system, summarizes the

results of research into the AKG system in the final year (1989-90), and

discusses future research issues related to AKG. For a more complete description

of the AKG system and details of it's theory and operation, the reader is directed

to the following documents available from the University of Central Florida

Library, 2500 University Blvd., Orlando, Florida, 32816:

• Functional Conflict Resolution in Automated Knowledge Generation, Ph.D.
Dissertation, Massood Towhidnejad, August 1990.

• The Use of Constraints to Represent Process System Knowledge in Automated

Knowledge Generation, MS Thesis, Frederick D. Mackenzie, May 1990.

• A Mega-heuristic Approach to the Problem of Component Identification in Automated Knowledge
Generation, MS Thesis, Robin Rouch Kladke, December 1989.

In addition to the above, a number of papers have been published that describe

various aspects of AKG. Copies of these publications can be found in Volume II of

this report. Consult the bibliography at the end of this document for publications

important to AKG in general, specifically the papers discussing the NASA

Knowledge-Based Autonomous Test Engineer (KATE) and model-based reasoning
systems in general.

2.0 Automated Knowledge Generation

The UCF AKG system is an automated reasoning tool designed to convert

schematic descriptions of process control systems into model-base

representations for use by automated diagnostic and control reasoning systems.

Relational or hierarchical databases of Computer Aided Design systems may be

accessed for input data to AKG, or the graph descriptions can be constructed

manually from drawings. Figure 1 illustrates the data stream to AKG. As can be

seen from the diagram, AKG requires only a Component list and a To-From

connectivity list between the components.

label a
label b

Database 'D->d _

Computer Aided Design

System

Drawing
c->al

e

e

i.__.__

Component &
To-From Lists

Figure 1. AKG Data Stream

The component labels, ideally, describe the component clearly and completely.

For example, 2-Way Butterfly Valve is a clearer description of a component than

the abbreviation But-fly vlv and is more complete than just 2-Way Valve. Any

of these labels is better than a non-descriptive label such as A213450 that

simply indicates a part number from a parts list. The labelling approaches used

on both CAD and manually generated drawings vary widely and cannot be

assumed to contain all the information necessary to derive complex model-bases.

In order to adequately label the components derived from a drawing of a

process system more information must be garnered. The AKG system does this

by propagating information through the component graph using natural
connectivity constraints. AKG must have seed data that is both true and

consistent. This data must come from either the input data (labels) or from the

human operator. Once AKG has seed data, it can begin the process of propagating
known labels to unknown labels--what is referred to as resolving.

The AKG program follows good software engineering design methods and is

highly structured and modular. Structured programming allows a complex

2

system to be easily understood in terms of function and data flow while

modularity allows easy modification and configuration management control. The

AKG system diagram is shown in Figure 2. AKG consists of a number of processes

that each perform a specific and important function in the creation of a

knowledge base. The entire system is written in Common Lisp and runs on a

Symbolics 3600 series AI workstation or equivalent.

CAD

L.ZL;
Access Component

,o-_;,m"

Spawn

_! Access

;_ SpawnConn. Gen.
Comp KB

+4 Parser
Resolver

Builder

/
.,.?-,......;,:;:;.-.-,-.-_,
,'=_ Knowledge Bale 1.

Object Cluster

,_ I _k, po,,+u,,

\+.,
Reso,ver_ _

Temp. Comp.

Knowledge base
Component

Knowledge base

Figure 2. AKG System Diagram

builder

Connection

Genera!or //I _ Editor

ooo+ooo.+_ __i_ /

Data enters the AKG program in the form of two ASCII files, compoc.dat and

tofromc.dat. These names are not shown in the diagram. The files can be

generated by a CAD system or by hand.

The compoc.dat has the following format:

Component Name

PW #3
OPAMP #2

R3
R4
R5

Component Description Units

Power Supply VDC
OPERATIONAL
AMPLIFIER
RESISTOR OHM
RESISTOR OHM
RESISTOR OHM

The tofromc.dat has this format:

Component Name Connecting Point Component Name Connecting Point

PW #3 + R3 a
PW #3 R4 a
R3 b OPAMP #2 I
R4 b OPAMP #2 J
R4 b R5 a
OPAMP #2 O R5 b

These files are read into AKG by its ACCESS process and converted into two

global lists, the component-data-list and the to-from list. The component-data-

list is used by the SPAWN process to create a unique software object for each of

the components and this object set is called the object cluster. A third process,

the Connection Generator, uses the to-from list to provide connectivity

information to the object cluster. At the completion of these three processes, AKG

has stored in memory an object-oriented representation of the original process

system drawing as a sparsely connected graph. The object-oriented

representation allows for easy manipulation of the graph and this capability is

essential to the process of determining an adequate set of models for the process

system.

4

The internal representation used for each of the components in the object-
cluster is given below:

(objectPUMP
(typeSOURCE)
(inputs((ELECTRICAL-SOURCEANALOG-VALUE) (FLOW-INPUT

ANALOG-VALUE) (PRESSURE-INPUTANALOG-VALUE)))
(outputs(FLOW-OUTPUTANALOG-VALUE)))
(output-functions(FLOW-OUTPUT(IF (AND ELECTRICAL-SOURCE

FLOW-OUTPUT)(SQRT(/(- MAXIMUM-PRESSURE
PRESSURE-INPUT)(+ PUMP-CVTOTAL-CV)))
0.0)))

(parameters ((PUMP-CV 15.4) (MAXIMUM-PRESSURE 6.5)))
(strong-constraint (TYPE-OF-OUTPUTS TYPE))
(normal-constraint (UNITS))
(weak-constraint (RATING DELAY))
(delay 2)
(units (FLOW-INPUT GPM)))

Note that this representation is frame-like. The frames of the object-cluster,

when complete, are translated by the BUILDER process into the data

representation required by the automated reasoning system target. The BUILDER

is nothing more than a formatter and is easily modified to output data to any

model-based reasoning target system if the knowledge-base consists of

component representations mapped directly to components of a system drawing.

AKG cannot accommodate specialized functions that are not present on the

system drawing. AKG can create pseudo or meta-componentst if the objects are

present in the input data (compoc.dat and tofromc.dat files). AKG cannot resolve

pseudo or meta-components if their descriptors are not present in the

component database.

The process of converting the graph component label nodes into a knowledge

base begins with a table-lookup type of operation. The process is essentially a

matching operation between the labels and known components in a database.

The matching is performed by a lexical analysis of each component label by the

PARSER process. The PARSER checks the label against labels stored in the

COMPONENT KNOWLEDGE BASE (CKB). The CKB consists of a hierarchial tree of

objects beginning with a small number of root nodes that represent generic

object classes such as valves, transducers, etc.. The nodes decrease in generality

until a specific component is represented at the leaves, for example, a manual

ball valve. Each component in the CKB has a complete functional description that

is retrieved and stored temporarily within AKG. After the object cluster has been

parsed against the CKB, the conversion process is finished--unless there are

t components not represented by a physical object; e.g., flow or pressure.

unresolved components. In this case, AKG uses it's RESOLVER module to attempt

to determine the nature of the unknown objects using constraint propagation.

The user interface to AKG uses the bit-mapped graphic windowing capabilities of
the Symbolics to provide a simple operating environment from which to

generate knowledge bases. The process is interactive and requires human

attendance; however, AKG was designed to be operated by a domain expert, in

this case the process engineer. Section four of this report Using the AKG System

discusses a knowledge base generation session with AKG on a typical process
control system.

3.0 Accomplishments

The primary accomplishment of the final year of research and the completion of

the grant was to finish the Automated Knowledge Generation system as

described and discussed within reports over the last three years. The system is

fully functional and capable of converting CAD data automatically into

knowledge-bases with minimal human involvement. There are a set of caveats

that accompany the previous statement and these are:

• CAD system data must be in the form of two lists, one of component labels

and one of component interconnectivity.

° The automated reasoning system target must:

• be frame-based, and

• assume one-to-one correspondence between components in the system
acted on and the model-base.

AKG, at present, is written in Symbolics TM Common Lisp and may only be run on
Symbolics TM machines or emulators.

A number of tests have been run to verify the operation of AKG. The tests

include process systems and special experiments derived from digital circuits.

These are discussed at length in the dissertation listed in Section 1.0. The

limitations to AKG are bounded by the amount of information contained in the

Component Knowledge Base and the representation required by the target

reasoning system. In Section 4.0, we discuss a primary source of AKG

incompatibility, the use of pseudo-objects to describe conceptual entities that are

not inherent to a process drawing.

6

4.0 Pseudo-Objects Analysis

Pseudo-objects are objects or frames that represent engineering concepts (flow,

resistance, pressure, temperature, etc.) of specific components or a group of

components. They may even form a network that does not necessarily

correspond to the way in which components are physically connected, but that

interacts with such a network of interconnected components.

In the case of KATE, pseudo-objects are needed to completely describe system

functionality and are used to mediate the relationships between structurally

remote components. KATE does not expect to find a direct connection between

two physical objects or components that are remote structurally. In addition,

pseudo-objects are also used to localize complex computations such as collecting

all the information about a specific concept or property, making a calculation

based on the information and passing the result to a physical component

(usually a measurement component) or to another pseudo-object for further
calculations.

In order to add pseudo-objects to a model base of a system, the complete

structure of the system must be known. The entire system structure is needed,

because, as mentioned previously, even though a specific transfer function is

associated with each component, when all the components of a system are

connected, the properties from components upstream and downstream a specific

component affect such component's transfer function. Thus, pseudo-objects take

care of the relationships among the engineering concepts that arise from the

assembly and connection of the whole system and its actual functioning.

Consequently, to derive pseudo-objects for a system, some type of network

analysis is needed. The flow of the system is analyzed to produce the network
of pseudo-objects.

It seems that pseudo-objects may be avoided by allowing structurally remote

and functionally related objects to be directly connected in the model and by

allowing multiple transfer functions in the object of a single component.

According to (Scarlet al., 1987), the engineering concepts represented by

pseudo-objects could be left implicit in the objects of the physical components,

but it is usually conceptually cleaner to represent them separately. As discussed

before, they localize complex computations and allow for the representation of

global engineering concepts for the entire system as well as for subsystems.

Besides, the use of pseudo-objects eases the process of functional inversion in

KATE by avoiding objects with multiple transfer functions.

Examples of the clarified representation provided by pseudo-objects are

observed in the model of the Red Wagon System constructed for KATE. In that

7

model, separate pseudo-objects were used to calculate the admittances of
several subsystems like the all-pumps circuit (four pumps with their associated
valves and flow sensors), the feedback area (a valve and a flow sensor) and the
fill circuit (two valves and two flow sensors). Each of these pseudo-objects
obtained the values for their inputs from other pseudo-objects that calculate
admittances for smaller subsystems. The inputs of this network of pseudo-
objects come from physical objects. In this way, pseudo-objects kept this
network of calculations out of the physical component objects. At the same time,

subsystems (subgroups of components within the entire system) have their

properties represented making it possible to recognize subsystems during

diagnosis as the cause of failure and to descend into these subsystems and

attempt to isolate a culprit assuming single-point failure (see NASA AI Lab

Memos listed in the Bibliography).

The inference engine in an automated reasoning model-based system, in this

case KATE, has several functions. It simulates the behavior of the real system
by means of the model, compares the values calculated in the model with those

measured in the real system, and then searches upstream and downstream for

the cause of any disagreement between these values. Such discrepancies are

used for automatic control error signals or may be evaluated to indicate the

malfunctioning of one or several components. When looking for a faulty

component, KATE goes from measurements (that indicate disagreement with

calculated values in the model) to commands, performing the process of

functional inversion. When going back through the objects to the commands, the

transfer function of each object is inverted to get values for the input(s) given

the output. With multiple transfer functions, one of the problems to face would

be the many more paths to explore in the network of objects because of the

multiple functions to invert in a single object. Consequently, objects with

multiple transfer functions (often referred to as multiple-output objects) are

avoided because they complicate the process of functional inversion that KATE

performs to locate faulty components.

The above arguments explain in some way the presence of pseudo-objects in

KATE's models and give very general guidelines for their use, but from the AKG

standpoint it is important to determine what it takes to automate the generation
of such pseudo-objects.

The issues concerning the automated generation of pseudo-objects mainly relate

to one of the following requirements. First, a standard, more specific procedure

or mechanism for the manual generation of pseudo-objects is needed. Second, in

the case of the calculation of some global engineering concepts represented by

pseudo-objects, the network analysis required to produce their transfer function

must be represented in some useable way.

The NASA/Boeing team has been successful in the creation of models for real
systems, models that have included a great deal of pseudo-objects (Belton et al.,
1990). The LOX, Purge Demo, and ECS systems were successfully modelled with
the original KATE frame representation and the Red Wagon System was the first
one to be represented as a working model with the most recent KATE frame
representation format (NASA AI Lab, 1990), which is also being used for the
creation of a model for the Water Tanking (ALO-H20) System. Since there could
be many right ways of modelling a system, the team has not been able to be
consistent in the creation of these knowledge bases, thus causing difficulty in the
establishment of specific guidelines for knowledge base (and pseudo-object)
generation. Representation inconsistencies like the following have been found
mainly from observations made in the models of the Red Wagon System (RWS)
and the Water Tanking System (WTS). Some components are modelled with
frames containing different slots in each one of these systems; also, other
components are modelled with a different number of pseudo-objects in each
system. For example, a simple flow meter is described in the RWS by a frame
with the following slots:

(inputs fluid-in flow-in)
(outputs elec-out flow-out)
(output-functions (elec-out (/ flow-in 1.07))).

In the WTS, however, these slots are shown for a similar flow meter:

(inputs flow-in)
(outputs flow-out)
(output-functions (flow-out flow-in)).

Some other components with different slots from one system to the other are the
pump, the vehicle tank, and the storage tank. In the WTS, the pump and the
motor that drives it are modelled separately; meanwhile, in the RWS, the motor
is not modelled, but the pump is modelled with its admittance and pressure
considered separately as pseudo-objects.

If these apparent inconsistencies in representation respond to the needs of the
particularsystem, this confirms the need for a deeper study of the issues
involved in component representation and the particularities and varying needs
of different types of systems and various arrangements of the same system. The
representation of transfer functions and pseudo-objects is too domain-specific
and system-specific. For example, the same valve might need different transfer
functions for the same property and, consequently, different pseudo-objects

9

depending on its position in a system. Also, depending on the domain involved
and the measurements in the system, a component might need a transfer
function for a different engineering property from the group of properties that
can possibly be modelled in that component.

At some point, there was some disagreement among KATE developers about
having either multiple-output or single-output objects (Belton et al., 1990). The
choice between these two dictates the degree to which pseudo-objects are going
to be used since the multiple-output approach require less use of pseudo-objects
than the single-output approach. Multiple-output objects allow multiple transfer
functions and the pseudo-objects are relieved from the task of representing the
additional engineering properties. The team suggested in one occasion (Belton et
al., 1990) the assumption of objects with a single transfer function and the
identification of a unique concept different from all real outputs to be the only
output for each component. The transfer function would determine the value of
this unique output that would unite and relate all the component's real outputs,
which were going to be transferred to separate pseudo-objects. The
identification of this unique concept would require a good amount of knowledge
of component design and the behavior of components in different systems•

In the RWS overview diagram shown in figure 3, the area that includes the
pumps, the manual valve, and the storage tank is marked. The group of frames

_.[li='I]L:I_iSCHEMAT[C PLOT REE

Select 0ptions

....... -----O-. _

...... --__

Cantral _tq-_-a_lT_l Silo|ire KB Hardcooy Configure Ex

eg

Poo. elol

D
:---.....__ iI _ :", ._.

-ii"

Rid Nalon Test Artl©le

b,, _e

-e

J_|tl_ O_lritl_ WIr, m_

..,_ _ ,D._,mm,-,.,... . vie-teD I"

,_ _ el.,.m_u _ lore. w,-ctm nil
vlI-_ !

L"_"_I _ P,',IaQ w, la _,_ 1.

tile Ulnd_ Melli UIn _ a i o_. .

Figure 3. Red Wagon System (RWS) Overview

10

of the RWS knowledge base that represents this small area is illustrated in figure
4. Each box in figure 4 represents the frame of a physical component, each circle
represents the frame of a pipe, and each ellipse represents the frame of a
pseudo-object. The arrows indicate the direction of the flow of information
between object frames. In the RWS knowledge base, a single transfer function
per frame was used. If more than one engineering property required a transfer
function in the component, pseudo-objects are used. That is why components
like the storage tank and the pumps are surrounded by pseudo-objects. If
multiple transfer functions would have been allowed in the RWS knowledge
base, there would be less pseudo-objects around the objects representing real
components.

In order to produce the transfer functions for the pseudo-objects representing
global engineering concepts, network analysis needs to be performed. For
example, Charles Goodrich obtained the transfer functions for the admittances,
pressures and flows of the Red Wagon System by reducing it to a network of
electrical components (Goodrich, 1990). He considered the tanks as voltage
sources and the pumps, sensors, pipes, and valves as resistors, each of which had
an associated admittance. He used the equation

flow = (pressure) 1/2 * admittance,

which reminds one of Ohm's Law. The need for this type of analysis requires a
great deal of system design knowledge in the different domains handled by
KATE.

Object-oriented programming is a good technique for modelling systems for
diagnosis and control. However, for the automated creation of pseudo-objects
that require network analysis, a more global method of system representation is
needed. This is because as indicated by (Borning, 1981), object-oriented
languages generally emphasize a very localized approach to interaction, that is,
an object interacts with other parts of the system only by sending and receiving
messages to other objects that it knows about. For network analysis, the global
view of the entire system is needed.

From this network analysis, KATE developers generate a complete network of
pseudo-objects. For instance, this can be seen in the RWS knowledge base, in
which some sections include complete networks of just frames of pseudo-objects.
In figure 5, again, each box represents the frame of a physical component, each
ellipse represents the frame of a pseudo-object, and the arrows indicate the
direction of the flow of information between object frames, in this case, most of
them, pseudo-objects. In this group of frames, the total admittance of the areas
where the pumps are found is being calculated in a pseudo-object (called ALL-

11

or'_

I
o,, o

' _o

W

.. x__Z

_ .,_

o
6

.-

.__ __

.,.- Q. ;D _

od=_,
E _

__,-

r., o __ I-

,, g8_,
.g

'D

o

o

-r-_

0

o
• 0

2_
0 0

0

_ -,.-I
_ m

-,-I

PUMPS-CIRCUIT-ADMITTANCE) by adding admittances from two subsystems in

the RWS that contain pumps, the fill pumps area and the replenish area. These

subsystem admittances are being calculated in pseudo-objects (FILL-PUMPS-

CIRCUIT-ADMITTANCE and REPLENISH CIRCUIT ADMITTANCE) that, in turn,

obtained values from other pseudo-objects that calculate the admittances for

other subareas (PRIMARY-FILL-PUMP-ADMITTANCE and SECONDARY-FILL-

PUMP-ADMITTANCE in the case of FILL-PUMPS-CIRCUIT-ADMITTANCE). The

sequence of pseudo-objects continues in this way until the values are obtained

from the individual physical components in the subsystem (like the pump P3

and and the valve V10). The network does not stop here, however, since these

pseudo-objects are, at the same time, being utilized by other pseudo-objects that

calculate the values of other engineering properties needed by measurement
devices.

The difficulty in generalizing the generation of pseudo-objects provokes the

thought that there might be alternative approaches to the use of pseudo-objects.

Pseudo-objects might be eliminated if some way to represent the system more

globally forming modules (collection of parts or objects) out of those frequent

arrangements of components that have some kind of common property or

engineering concept that needs to be represented. Some ideas are described by

(Davis, 1985) and (Borning, 1981). The modules would be a group of

components and, at the same time, each would have a transfer function of its

own describing a global property. The problem with this approach is that there

might be an infinite number of arrangements of components to be represented.

A generalization of the procedures to manually generate pseudo-objects is

needed to automate the process. However, this generalization could be possible
only after actually modelling many systems of all kinds, which will allow an in-

depth look at many different situations. Generalization from observations in a

few KATE models or from interviews with members of the KATE developing

team, especially when there is no consensus of opinion among them, is not
feasible.

In order to automate pseudo-objects, a consistent procedure to implement them

manually must be agreed upon first. The only guidelines available, which are

found in (NASA AI Lab, 1990), are still too vague and leave ample room for a

myriad of interpretations. Pseudo-objects have worked, but a standard for them

has not been adopted. A deeper study of the issues involved in their

implementations and the particularities of the multiple different systems that

KATE may handle is another research topic altogether. The degree to which

pseudo-objects are used will depend on the approach taken to represent

functionality in the frame-based knowledge base. This choice of the approach
will take into account the limitations and capabilities of KATE itself in terms of

13

the methods used by it to make pertinent diagnostic and control functions. This
new research should lead to generalizations, if this is at all possible, that allow
the creation of a more standard procedure to generate pseudo-objects that could
be used in automation. Automation later will have its own issues, including
those pseudo-objects that represent global system engineering concepts that
might not be easily handled in an object-oriented environment and that might
need a more global approach of representation.

5.0 Conclusion and Areas for Future Research

The Automated Knowledge Generation project has been a learning experience for

both NASA and the University of Central Florida. The original goal of automating
knowledge acquisition has been met, however, the system described has

limitations that can be reduced with further research and development. We have

identified two basic areas that show promise for new research efforts that build

on the lessons learned from the AKG study. In addition to new research areas,

the AKG system could be greatly enhanced by relatively simple operational
improvements.

5.1 Operational Improvements to the AKG System

Translation of the AKG system from Common Lisp into C++ would greatly expand
the number of computer platforms that the software would run on. The AKG

system was designed using good software engineering practice such that all

functions are self-contained and modular. The user interface, which requires a

graphic windowing environment, is separable from the other AKG functions that

process the CAD data and interface with the Component Knowledge Base. A

window system such as X would be ideal for porting the user interface to and

would further expand the range of machines capable of running AKG software.

The Component Knowledge Base (CKB) currently holds approximately 350

entries. These were determined from the experimental systems used during the

project to test and verify AKG functions. If AKG were to be used on large,

complex systems, the CKB would require expansion. This expansion would best

be performed off-line and not by discovery. A possible option would be to

automate the buildup of the CKB, however, it may prove easier to create a

funded task to perform the work. In any event, the CKB represents a basic

boundary on AKG ability to perform and any expansion of the CKB will improve
AKG.

The use of parallel processors is becoming more frequent as newer, less

expensive, and higher performance architectures become available. The search

and constraint propagation processes that occur in AKG would lend themselves

14

to parallel processing approaches. The Parser essentially searches the CKB for
each component in serial. This process would immediately improve with a
parallel architecture since these searches are independent of component.
Also, components with high confidence tend to be confined to localized areas
making the constraint propagation process an excellent candidate for parallel
processing.

5.2 Automated Design Data Capture

Design Data Capture addresses the problem of determining what methodologies
and actions lead to good engineering design. The automation of this function is

an attempt to capture information from humans that is both critical to design yet

inherently transparent to observers. A primary approach to the problem

involves capturing knowledge from designs as they are created during work

being performed through the use of a CAD system. Automated Design Data

capture can be viewed as an extension to AKG because of the ability of AKG to
access and interpret CAD.

Research into Automated Design Data Capture has been identified as a critical

area of AI research by both NASA Ames Research Center and Stanford

University. The extension of tools such as AKG to aid in these studies is a natural

direction for further research in the area.

5.3 Automated System Identification

A loose assumption often made by model-based reasoning systems that are

constructed of component models is that the components are independent in
behavior and that linear superposition of function holds. This was the situation

with the KATE system. KATE assumes that a model, visa visa component, is

independent and that all data streams in the target system are observable. The

addition of pseudo-objects to the KATE functional inversion mechanisms solves

this problem, however, as discussed in Section 4, a number of other issues

become sensitized--specifically, the consistency and standardization of the

model. AKG was designed to create model-bases with the assumptions above and

cannot accommodate complex pseudo-object structures without modifications to

the design approach. As an alternative, research into the development of an
Automated System Identification program that combines functions of both KATE

and AKG might be productive.

An Automated System Identification program would, like KATE, model the target

system dynamically and control and diagnose in real-time. Like AKG, it would

derive data from CAD representations, however, the identification functions

would operate in real-time and functional parameters would be modifiable in

15

real-time. This program would be unlike KATE and AKG in that the system

model would be global in scope and not rely on individual component models.

Instead, the system would construct world models that describe physical

functionality of the system in terms of flows, both electrical, fluid, energy and

information. The checkpoints of the flow data would be prescribed by existing

sensor data determined from the CAD drawings. The world models would be

constructed from the collective behavior of the component elements in the same

way that an engineer constructs a mental representation of the system he is

working with. The system would be provided with an image scanning front end

so that ambiguities in component identification would be minimized.

Bibliography

Andreae, P. M. 1984. Constraint Limited Generalization: Acquiring Procedures From Example. In
Proceedings of AAAI, Los Altos: Morgan Kaufmann. 6-10.

Bainbridge, B. 1988. The Explicit Representation of Control Knowledge. Approaches to Knowledge

Representation, An Introduction, edited by G A. Ringland, and D.A. Duce, England: Research
Studies Press LTD.

Balzer, R. M. 1973. A Global View of Automatic Programming. In Proceedings of the IJCAI. Menlo

Park, CA: Stanford Research Institute Publishing Company. 494-499.

Barr, A., and E. A. Feigenbaum. 1981. Automatic Programming. The Handbook of Artificial Intelligence,

Volume H, Reading, MA: Addison-Wesley Publishing Company, Inc. 297-305.

Beasley, W. G. 1986. Expert System Rules from CAD Database. In Proceedings of American Control
Conference, Seattle: 146-151.

Bennet, J. S. 1985. ROGET: A Knowledge-Based System for Acquiring the Conceptual Structure of a

Diagnostic Expert System. Journal of Automated Reasoning, 1: 49-74.

Bible, W. 1988. Constraint Satisfaction from a Deductive Viewpoint. Artificial Intelligence, 35, no. 3:
401-413.

Biswas, P. K. 1990. An object-Oriented Knowledge Acquisition Tool. In Proceedings of the 3rd Florida

Artificial Intelligence Research Symposium, Cocoa Beach, FL: n.p. 96-100.

Boose, J. H. 1984. Personal Construct Theory and the Transfer of Human Expertise. In Proceedings of
the AAA/. 27-33.

16

Borning, A. 1981. The ProgrammingLanguageAspectsof the ThingLab, A Constraint-Oriented

Simulation Laboratory. ACM Transactions on Programming Languages and Systems, 3, no. 4
(October): 353-387.

Boming, A. 1977. ThingLab -- An Object-Oriented System for Building Simulations Using Constraints.

In Proceedings of the IJCAI. Pittsburgh: Dept. of Computer Science, Carnegie-Mellon University.
497-498.

Borning, A., Duisberg, R., and Freeman-Benson, B. 1987. Constraint Hierarchies. In Proceedings of

Object-Oriented Programming Systems, Languages and Applications. New York: Association for

Computing Machinery. 48-60.

Carbonell, J. R. 1970. AI in CAI: An artificial intelligence approach to computer-aided instruction." IEEE

Transactions on Man-Machine Systems, MMS-11 (4): 1970.

Chou, H., J. F. Garza, and N. Ballou. 1986. Supporting a Database System on Symbolics LISP

Machines. IEEE Computer Society Technical Committee on Database Engineering, 9, no 3: 17-22.

Cornell, M. 1987. The KATE Shell An Implementation of Model-Based Control, Monitor and Diagnosis.

In Proceedings of the First Workshop on Space Operations Automation and Robotics, Houston:
n.p. 134-140.

Davis, L. S., and T. C. Henderson. 1981. Hierarchical Constraint Process for Shape Analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI 3, no. 3 (May): 265-277.

Dechter, R. and A. Dechter. 1988. Belief Maintenance in Dynamic Constraint Networks. In Proceedings
of the AAA/. Los Altos: Morgan Kaufmann. 37-41.

Dechter, R., and J. Pearl. 1989. Tree Clustering for Constraint Networks." Artificial Intelligence, 38, no.
3: 353-366.

Dechter, R., and J. Pearl. 1988. Network-Based Heuristics for Constraint-Satisfaction Problems.

Artificial Intelligence, 34, no. 1: 178-183.

Dechter, R. 1986. Learning While Searching in Constraint-Satisfaction-Problems. In Proceedings of the
AAA/. Los Altos: Morgan Kaufmann. 178-183.

Dixit, V., and D. I. Moldovan. 1984. Discrete Relaxation on SNAP., IEEE Transaction, 637-644.

Dreyfus, H. L. 1979. What Computers Can'tDo. New York: Harper & Row.

Duisberg, A. 1986. Animated Graphical Interfaces Using Temporal Constraints. In Proceedings of ACM
CHI 86. 131-136.

17

E1-Hawary.M. E. 1984.Control System Engineering. Reston, VA: Reston Publishing Company.

Fox, M. 1981. Reasoning With Incomplete Knowledge in a Resource-Limitted Environment: Integrating

Reasoning and Knowledge Acquisition. In Proceedings of IJCAI, Menlo Park, CA: AAAI Press.
313-318.

Freuder, E. C. 1978. Synthesizing Constraint Expressions. Communications of the ACM, 21, no. 11:
958-965.

Gelman, A., S. Altman, M. Pallakoff, K. Doshi, C. Manago, T. C. Rindfleisch, and B. G. Buchanan.

1988. FRM: An Intelligent Assistant for Financial Management. In Proceedings of the AAAI. Los
Altos: Morgan Kaufmann. 31-36.

Genesereth, M. R. 1984. The use of Design Descriptions in Automated Diagnosis. Artificial Intelligence,
24. no. 3:411-436.

Hamscher, W., and R. Davis. 1984. Diagnosing Circuits with State: An Inherently Underconstrained

Problem. In Proceedings of AAAI, Los Altos: Morgan Kaufmann. 142-147.

Haralick, R. M., and G. L. Elliott. 1980. Increasing Tree Search Efficiency for Constraint Satisfaction
Problem. Artificiallntelligence, 14, no. 3: 263-313.

Haralick, R. M., and L. G. Shapiro. 1979. The Consistent Labeling Problem: Part I. IEEE Transactions

on Pattern Analysis and Machine Intelligence, PAMI 1, no. 2 (April): 173-184.

Harel, D. 1987. Algorithmics The Spirit of Computing. Wokingham, England: Addison-Wesley
Publishing Company.

Hashemi, S. 1989. PLant EXpert SYStem (PLEXES), A Model-Based Reasoning Approach to Plant

Modeling. In Proceedings of American Institute of Chemical Engineer (AICHE), Houston: n.p.
87-93.

Hashemi, S., L. J. Paterson, J. Somsel, R. E. Colley, and R. S. May. 1989. Application of PLEXSYS in

Nuclear Power Plants: Technical Specifications Monitoring and Maintenance Management. In

Proceedings of Expert Systems Applications for the Electric Power Industry, Orlando, FL, n.p.
68-7.4.

Hayes-roth, F., D. A. Waterman, and D. B. Lenat. 1983. Building Expert Systems. Reading, MA:
Addison-Wesley.

Hewitt, C. 1971. "Description and Theoretical Analysis (Using Schemas) of PLANNER: A Language for

Proving Theorems and Manipulating Models in a Robot." Ph.D. dissertation, AI Laboratory, MIT.

18

Hummel,R. A., and S.W. Zuker. 1983. On The Foundations of Relaxation Labeling Processes. IEEE

Transactions on Pattern Analysis and Mactu'ne Intelligence, PAMI 5, no. 3 (May): 267-287.

Intellicorp. 1988. Knowledge Engineering Environment, KEE, Users Manual. Mountain View, CA:Intellicorp.

Intergraph. 1987. Data Management and Retrieval System. Volume H, DIXD3310, Huntsville, AL:
Intergraph Corporation.

Jamieson, J. R., E. A. Scarl, and C. I. Delaune. 1985. A Knowledge Based Expert System for Propellant

System Monitoring at the Kennedy Space Center. In Proceedings of 22nd Space Congress, CocoaBeach, FL, n.p. 242-247.

Kahn, G., S. Nowlan, and J. McDermott, 1985. MORE: An Intelligent Knowledge Acquisition Tool. In
Proceedings oflJCAI-85, Los Altos: Morgan Kaufmann.

Kasif, S. 1986. On the Parallel Complexity of Some Constraint Satisfaction Problems. In Proceedings of
the AAAI. Los Altos: Morgan Kaufmann. 349-353.

Kemper, A., and M. Wallrath. 1987. An Analysis of Geometric Modeling in Database System. ACM
Computer Surveys, 19, no. 1 (March): pp 47-90.

Ketonen, J. A. 1989. Toward Reasoning About Data. A/Expert, February, 44-49.

Klahr, P., and D. A. Waterman. 1986. Expert Systems Techniques, Tools, and Applications. Reading,
MA: Addison-Wesley Publishing Company.

Ladkin, P. B. 1988. Satisfying First-Order Constraints About Time Interval. In Proceedings of AAAI,
Los Altos: Morgan Kaufmann. 512-517.

Leler, W. 1988. Constraint Programming Languages Their Specification and Generation. Reading, MA:
Addison-Wesley Publishing Company, Inc.

Levitt, D. 1984. Machine Tongues X: Constraint Languages. Computer Music Journal, 8, no. 1" 9-17.

Loveland, D. W., and M. Valtorta, 1983. Detecting Ambiguity: An Example in Knowledge Acquisition.
In Proceedings oflJCAL LOs Altos: Morgan Kaufmann. 182-184.

Mackworth, A.K., and E.C. Freuder. 1985. The Complexity of Some Polynomial Network Consistency

Algorithms for Constraint Satisfaction Problems. Artificial Intelligence, 25, no. 1: 65-74.

19

Mackworth,A. K. 1977.Consistencyin Networkof Relations.Artificial Intelligence, 8, no. 1:99-118.

Marcus, S., and J. McDermott, 1989. SALT: A Knowledge Acquisition Language for Propose-and-

Revise Systems. Artificial Intelligence, 39, no. 1.1-37.

Marcus, S., J. McDermott, and T. Wang. 1985. Knowledge Acquisition for Constructive Systems. In

Proceedings oflJCAI-85, Los Altos: Morgan Kaufmann.

Mathews. 1987. Numerical Methods for Computer Science, Engineering and Mathematics. Prentice-Hall.

McAllester, D. A. 1878. A Three Valued Truth Maintenance System. Massachusetts Institute of

Technology Artificial Intelligence Laboratory, AI Memo 473, 1-24.

McDarmott, J. 1982. RI: A Rule-Based Configurer of Computer Systems. Artificial Intelligence, 19, no.

1: 31-88.

Menzies, T. 1989. Domain-Specific Knowledge Representation. A/Expert, June 36-45.

Mingruey, R. T., and S. N. Srihari. 1987. Modeling Connections for Circuit Diagnosis. In Proceedings

of the IEEE 3rd Conference on Artificial Intelligence,

Minton, S. 1984. Constraint-based Generalization Learning Game-Playing Plans from Single Examples.

In Proceedings of the AAA/. Los Altos: Morgan Kaufmann. 251-254.

Moher, R., and T. C. Henderson. 1986. Arc and Path Consistency Revisited. Artificial Intelligence, 28,

no. 2: 225-233.

Morgenstern, M. 1984. Constraint Equations: A Concise Compilable Representation for Quantified

Constraints in Semantic Networks. In Proceedings of the AAA/. Los Altos: Morgan Kaufmann.

255-259.

Nachtsheim, P. R. 1989. Solving Constraint Satisfaction Problem. AI Expert, June, 30-35.

NASA Kennedy Space Center, "Knowledge Base Generation Guide". Internal Technical Report, NASA-

KSC, Florida, March 1989.

NASA Ken.nedy Space Center, "KATE Knowledge Base Generation Guide." Internal Technical Report,

NASA-KSC, Florida, November 1989.

Nishihara, S., and K. Ikeda. 1985. A Constraint Synthesizing Algorithm for the Constraint Labeling

Problem. In Proceeding of 7th International Conference on Pattern Recognition. Washington:

Computer Science Press. 310-312.

20

Nishihara, S., and K. Ikeda. 1986. A Solution Algorithm for the Constraint Labeling Problem Using the

Structure of Constraints. In Proceeding of 8th International Conference on Pattern Recognition.

Washington: Computer Science Press. 198-200.

Ohlsson, S. 1983. A Constrained Mechanism for Procedural Learning. In Proceedings of the HCAI. Los

Altos: Morgan Kaufmann. 426-428.

Parsaye, K. 1988. Acquiring and Verifying Knowledge Automatically. A/EXPERT, May 48-54.

Pazzani, M. J. 1986. Refining the Knowledge Based of a Diagnostic Expert System: An Application of

Failure-Driven Learning. In Proceedings of AAAI, Los Altos: Morgan Kaufmann. 1029-1035.

Pearl, J. 1986. Fusion, Propagation, and Structuring in Belief Networks." Artificial Intelligence, 29, no.
3: 241-288.

Price, K. E. 1985. Relaxation Matching Techniques - A Comparison. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI 7, no. 5 (September): 617-623.

Purdom, P. W. 1984. Solving Satisfiability with Less Reasoning. IEEE Transactions on Pattern Analysis

andMachine Intelligence, PAMI 6, no. 4 (July): 510-513.

Rendell, L. 1985. Substantial Constructive Induction using Layered Information Compression: Tractable

Feature Formation in Search. In Proceedings of the 9th IJCAI, Los Altos: Morgan Kaufmann.
650-658.

Rich, E. 1983. Artificial Intelligence. New York: McGraw-Hill Book Company.

Rissland, E. L., and E. M. Soloway. 1981. Constrained Example Generation: A Testbed for Studying

Issues in Learning. In Proceedings of the IJCAI. Menlo Park, CA: AAAI Press. 162-164.

Rit, J. 1986. Propagating Temporal Constraints for Scheduling. In Proceedings of AAA1, Los Altos:

Morgan Kaufmann. 383-388.

Rosenfeld, A., R. A. Hammel, and S. W. Zucker. 1976. Scene labeling by relaxation operations. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-6, (June): 420-433.

Rumbaugh, J. 1987. Relations as Semantic Constructs in an Object-Oriented Language. In Proceedings of

OOPSLA, New York: Association for Computing Machinery. 466-481.

Rychener, M. D. 1988. Research in Expert Systems for Engineering Design. Expert Systems for

Engineering Design, Edited by Michael D. Rychener, San Diego: Academic Press INC.

21

Scarl, E. A., J. R. Jamieson,and C. I. Delaune. 1987. Diagnosis and Sensor Validation through
Knowledgeof StructureandFunction.IEEE Transactions on Systems, Man, and Cybernetics,
MMS-17(3): 165-169.

Seidel, R. 1981. A New Method For Solving Constraint Satisfaction Problems. In Proceedings of the

IJCAI. Menlo, CA: AAAI press. 338-341.

Shaw, M. G. 1982. PLANET: Some Experience in Creating an Integrated System for Repertory Grid

Applications on a Microcomputer. International Journal of Man-Mactu'ne Studies, 17, 345-360.

Smith, C. A., and A. B. Corripio. 1985. Principles and Practice of Automatic Process Control. J. Wiley.

Stahl, H., K. M. Ford, J. R. Adams-Webber, and J. Novak. 1990. ICONKAT: Integrated Constructivist
Knowledge Acquisition Tool. In Proceedings of the 3rd Florida Artificial Intelligence Research
Symposium, Cocoa Beach, FL: n.p. 90-95.

Stallman, R. M., and G. J. Sussman. 1977. Forward Reasoning and Dependency-Directed Backtracking
in a System for Computer-Aided Circuit Analysis. Artificial Intelligence, 9, no. 2:135-190.

Steinberg, L. I. 1987. Design = Top Down Refinement Plus Constraint Propagation Plus What? In
Proceedings of Man and Cybernetic, Piscataway, NJ: IEEE Computer Service Center. 498-502.

Steele, G. L., and G. J. Sussman. 1978. Constraint. Massachusetts Institute of Technology Artificial
Intelligence Laboratory, AI Memo No. 502.

Steels, L. 1983. Descriptions as Constraints in Object-Oriented Representation. In Proceedings of the
IJCAI. Los Altos: Morgan Kaufmann. 395-397.

Stefik, M. J. 1981. Planning with Constraints (MOLGEN: Part 1); Planning and Meta-planning

(MOLGEN: Part 2). Artificiallntelligence, 16, no. 2:111-139.

Sussman, G. J., and G. L. Steele. 1979. Constraints- A language for Expressing Almost-Hierarchical

Descriptions. Artificial Intelligence, 14, no. 1: 1-40.

Sutherland, I. 1963. "SKETCHPAD: A Man-Machine Graphical Communication System." Ph.D.
dissertation, AI Laboratory, MIT.

Symbolics Inc. 1988. Symbolics Common Lisp-Language Concepts. Cambridge, MA: Symbolics Inc.
45-52.

Tanaka, T. 1983. Representation and Analysis of Electrical Circuits in a Deductive System. In

Proceedings of the IJCAI. Los Altos: Morgan Kaufmann. 263-267.

Tanimoto, S. L. 1987. The Elements of Artificial Intelligence. Rockville, MD: Computer Science Press
Inc.

22

Thathachar,M. A., and P. S. Sastry. 1986. Relaxation Labeling With Learning Automata. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-8, no. 2 (March): 256-267.

Thomas, S. J. Automated Construction of a Knowledge Base From Computer Aided Design Data. NASA

Kennedy Space Center Artificial Intelligence Section, Internal Technical Report, KSC, FL: August
1987.

Ullman, J. R. 1982. Discrete Optimization by Relational Constraint Satisfaction. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-4. no. 5 (September): 544-551.

Vilian, M., and H. Kautz. 1986. Constraint Propagation Algorithms For Temporal Reasoning. In
Proceedings of AAAI, Los Altos: Morgan Kaufmann. 377-382.

Waterman, D. A. 1986. A Guide to Expert Systems. Reading MA: Addison-Wesley.

Waterman, D. A., and F. Hayes-Roth. 1987. Pattern-Directed Inference Systems. New York: Academic
Press.

Weiss, S. M., and C. A. Kulikowiski. 1984. A Practical Guide to Designing Expert Systems. Totowa,
N J: Rowman & Allenheld.

Williams, B. C. 1986. Doing time: Putting Qualitative Reasoning on Firmer Ground. In Proceedings of
AAAI, 105-112.

Wos, L. 1985. What is Automated Reasoning? Journal of Automated Reasoning 1: 1-45.

Yamada, N., and H. Motoda. 1983. A Diagnosis Method of Dynamic System Using the Knowledge on
System Description. In Proceedings oflJCAI, Los Altos: Morgan Kaufmann. 225-229.

Zadeh, L. A. 1965. Fuzzy Sets. Information and Control, 8: 338-353.

Zucker, S. W., Y. G. Leelerc, and J. L. Mohammed. 1981. Continuous Relaxation and Local Maxima

Selection: Conditions for Equivalence. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-3. no. 2 (March): 117-129.

23

